ON ALGERRAIC INTEGRALS IN THE PROBLEM OF MOTION OF A HEAVY GYROSTAT FIXED AT ONE POINT

TIATHEOOGO OLROATALA, ZAKREPLERNOOO V ODNOI TOOHKS)

PMM Vol.28, N, 1964, pp.516-520
I.A.KEIS
(Moscow)
(Received November 2, 1963)

1. The equations of motion of a heavy gyrostat fixed at one point, as is known [1], are of the form
$A \frac{d p}{d t}+(C-B) q r+m_{3} r-m_{2} r=y_{0}^{\prime} \gamma_{3}-z_{0}^{\prime} \gamma_{2}, \quad \frac{d \gamma_{1}}{d t}=r \gamma_{2}-q \gamma_{3} . \quad\left(x_{0}^{\prime}=M g x_{0}\right)$
$B \frac{d q}{d t}+(A-C) p r+m_{1} r-m_{3} p=z_{0}^{\prime} \gamma_{1}-x_{1}{ }^{\prime} \gamma_{3}, \quad \frac{d \gamma_{2}}{d t}=p \gamma_{3}-r \gamma_{1}$
$C \frac{d r}{d t}+(B-A) p q+m_{2} p-m_{1} q=x_{0}{ }^{\prime} \gamma_{2}-y_{0}{ }^{\prime} \gamma_{1}, \quad \frac{d \gamma_{3}}{d t}=q \gamma_{1}-p \gamma_{2}$
The system (1.1) does not contain time explicitly, has its last Jacobi multiplier equal to unity, and admits of the algebraic integrals

$$
\begin{gather*}
A p^{2}+B q^{2}+C r^{2}-2\left(x_{0}^{\prime} \gamma_{1}+y_{0}{ }^{\prime} \gamma_{2}+z_{0}^{\prime} \gamma_{3}\right)=h_{1} \\
\left(A_{p}+m_{1}\right) \gamma_{1}+\left(B q+m_{2}\right) \gamma_{2}+\left(C r+m_{3}\right) \gamma_{9}=h_{2}, \quad \gamma_{1}^{2}+\gamma_{1}{ }^{2}-\gamma_{3}^{2}=1 \tag{1.2}
\end{gather*}
$$

As was shown in [1 and 2], the system of equations (1.1) reduces to quadratures if $x_{0}^{\prime}=\psi_{0}^{\prime}=z_{0}^{\prime}=0$, when it admits of the fourth algebraic integral

$$
\left(A p+m_{1}\right)^{2}+\left(B q+m_{2}\right)^{2}+\left(C r+m_{3}\right)^{2}=L^{2}
$$

and in the case $A=B, x_{0}^{\prime}=y_{0}^{\prime}=0, m_{1}=m_{2}=0$, when it has the integral $r=r_{0}$.

We formulate the problem of finding general conditions for the existence of new algebraic integrals of the system (1.1) which are independent of the clasical integrals (1.2).
2. We shall show, first of all, that if Poincare's theorem [3 to 5] holds, then for the existence of a new algebraic integral it is necessary that the ellipsoid of inertia with respect to the fixed point be an ellipsoid of revolution. We replace

$$
p, q, r, \gamma_{1}, \gamma_{2}, \gamma_{3} t \text { by } \lambda^{-2} p, \lambda^{-2} q_{3} \lambda^{-2} r, \lambda^{-4} \gamma_{1}, \lambda^{-4} \gamma_{2}, \lambda^{-4} \gamma_{3}, \lambda^{2} t+t_{0}
$$

where λ is en arbitrary parameter, and we introduce the new variables

$$
\begin{aligned}
y_{1}=\sqrt{A(A-C)} p+i \sqrt{B(B-C)} q, \quad y_{2} & =\sqrt{A(A-C)} p-i \sqrt{B(B-C)} q \\
z_{1}=\gamma_{1}+i \gamma_{2}, \quad z_{2} & =\gamma_{1}-i \gamma_{2}
\end{aligned}
$$

As was done in [4 and 5], we replace

$$
y_{1}, y_{2}, z_{1}, z_{2}, \gamma_{3}, t \text { by } \lambda y_{1}, y_{2}, r, \lambda z_{1}, \lambda z_{2}, \lambda \gamma_{3},-i t
$$

Utilizing the integrals (1.2) for Equations (1.1) in new variables, following [5], we can prove Poincare's theorem: if the ellipsoid of inertia is not an ellipsoid of revolution, then for arbitrary initial conditidns, except for the case $x_{0}^{\prime}=y_{0}^{\prime}=z_{0}^{\prime}=0$, there cannot exist any new algebraic integral of the system (1.1).
3. We shall prove that if $x_{0}{ }^{2}+y_{0}{ }^{2}+z_{0}^{\prime}{ }^{2} \neq 0$ and $m_{1}{ }^{2}+m_{2}{ }^{2}+m^{\prime 2} \neq 0$, the the fourth algebraic integral is possible only in the case of a gyrostatic analog of Lagrange's case [2] defined by conditions

$$
A=B x_{0}^{\prime}=y_{0}^{\prime}=0, m_{1}=m_{2}=0
$$

We replace

$$
p, q, r, \gamma_{1}, \gamma_{2}, \gamma_{3}, t \text { by } \lambda^{-5} p, \lambda^{-5} q, \lambda^{-5} r, \lambda^{-10} \gamma_{1}, \lambda^{-10} \gamma_{2}, \lambda^{-10} \gamma_{3}, \quad \lambda^{5} i t+t_{0}
$$ and introduce in Equation (1.1) the variables

$$
\begin{aligned}
y_{1}=p+i q, \quad y_{2} & =p-i q, \quad z_{1}=\gamma_{1}+i \gamma_{2}, \quad z_{2}=\gamma_{1}-i \gamma_{2} \\
m_{1}^{\prime} & =m_{1}+i m_{2}, \quad m_{2}^{\prime}=m_{1}-i m_{2}
\end{aligned}
$$

Let us assume that, in accordance with Poincare's theorem, $A=B$; then, for an appropriate choice of the coordinate system, we find $y_{0}^{\prime}=0$. The system (1.1) becomes the system

$$
\begin{gather*}
A \frac{d y_{1}}{d t}=(C-A) r y_{1}+z_{0}^{\prime} z_{1}-x_{0}^{\prime} \gamma_{3}+\lambda^{5} \quad\left(m_{3} y_{1}-m_{1}^{\prime} r\right), \frac{d z_{1}}{d t}=y_{1} \gamma_{3}-r z_{1} \\
A \frac{d y}{d t}=(A-C) r y_{2}-z_{0}{ }^{\prime} z_{2}+x_{0}^{\prime} \gamma_{3}+\lambda^{5}\left(m_{2}^{\prime} r-m_{3} y_{2}\right), \quad \frac{d z_{2}}{d t^{2}}=r_{2}-y_{2} \gamma_{3} \tag{3.1}\\
2 C \frac{d r}{d t}=x_{0}^{\prime}\left(z_{2}-z_{1}\right)+\lambda^{5}\left(m_{2}^{\prime} y_{1}-m_{1}^{\prime} y_{2}\right), \quad 2 \frac{d \gamma}{d t^{3}}=y_{2} z_{1}-y_{1} z_{2}
\end{gather*}
$$

For the system (3.1) we have the following first integrals:

$$
\begin{equation*}
A y_{1} y_{2}+C r^{2}-x_{0}^{\prime}\left(z_{1}+z_{2}\right)-2 z_{0}^{\prime} \gamma_{3}=h_{1} \tag{3.2}
\end{equation*}
$$

$$
A\left(y_{1} z_{2}+z_{1} y_{2}\right)+2 C r \Upsilon_{3}+\lambda^{5}\left(m_{1}^{\prime} z_{2}+m_{2}^{\prime} z_{1}+2 m_{3} \gamma_{3}\right)=h_{2}, z_{1} z_{2}+\gamma_{3}^{2}=h_{3}
$$

If we again introduce an arbitrary parameter by replacing
$y_{1}, y_{2}, r, z_{1}, z_{2}, \gamma_{3}, t$ by $\lambda^{2} y_{1}, \lambda y_{2}, \lambda r, \lambda^{3} z_{1}, \lambda^{2} z_{2}, \lambda^{3} \gamma_{3}, \lambda^{-1} t+t_{0}$
then the system (3.1) and ito firot intograls (3.2) assume the form

$$
\begin{gather*}
A \frac{d y_{1}}{d t}=-\left(A-C^{\prime}\right) r y_{1}+z_{0}{ }^{\prime} z_{1}-x_{0}{ }^{\prime} \gamma_{3}-\lambda^{3}\left(m_{1}^{\prime} r-\lambda m_{3} y_{1}\right), \quad \frac{d z_{1}}{d t}=-r z_{1}+\lambda y_{1} \gamma_{3} \\
A \frac{d y_{2}}{d t}= \\
2 C \frac{d r}{d t}=x_{0}{ }^{\prime}\left(z_{2}-\lambda z_{1}\right)-\lambda^{4}\left(m_{1}{ }^{\prime} y_{2}-\lambda m_{2}{ }^{\prime} y_{1}\right), \quad 2 \frac{d \gamma_{3}}{d t}=y_{2} z_{1}-y_{1} z_{2} \tag{3.3}\\
C r^{2}-x_{0}{ }^{\prime} z_{2}+\lambda\left(A y_{1} y_{2}-x_{0}{ }^{\prime} z_{1}-2 z_{0}{ }^{\prime} \gamma_{3}\right)=h_{1} \tag{3.4}
\end{gather*}
$$

$A\left(y_{1} z_{2}+z_{1} y_{2}\right)+2 C r \gamma_{3}+\lambda^{3}\left(m_{1}^{\prime} z_{2}+\lambda m_{2}^{\prime} z_{1}+2 \lambda m_{3} \gamma_{3}\right)=h_{2}, z_{1} z_{2}+\lambda^{2} \gamma_{3}^{2}=h_{3}$
Husson showed that if $m_{1}^{\prime}=m_{2}^{\prime}=m_{3}=0$, the fourth algebraic intugral exists in Lagrange's case ($A=B, x_{0}^{\prime}=y_{0}^{\prime}=0$) and Kowalewski's case $\left(A=B=2 C, y_{0}^{\prime}=z_{0}^{\prime}=0\right)$; the proof utilized the first three terms of the series expansion of the general integral of the resuiting system of equations in powers of the parameter λ, which was assumed to be small. It was
also taken into account that the right-hand sides of the resulting system of equations and its first integrals were polynomials in $y_{1}, y_{2}, r, z_{1}, z_{a}, y_{3}$ and λ. It may be noted that the first three terms of the series expansions in powers of λ of the general untegral of the system (3.3) and integrals (3.4) are polynomials in $y_{1}, \nu_{2}, r, z_{1}, z_{2}, y_{3}$ and λ and are independent of $m_{1}^{\prime}, m_{2}^{\prime}$ and m_{3}. For this reason Husson's result should be regarded as one of the necessary conditions for the existence of a new fourth algebraic integral of the system (1.1). Thus, the problem reduces to finding new conditions in addition to those which hold for Kowalewski's and Lagrange's cases.
4. Let us find these conditions for Kowalewski case. We set

$$
A=B=2 C_{1} y_{0}^{\prime}=z_{0}^{\prime}=0, c=x_{0} C^{-1}, \mu_{i}=m_{i}^{\prime} C^{-1} \quad(i=1,2) m_{3}^{\prime}=m_{3} C^{-1}
$$

and, replacing in (1.1) the quantities

$$
p, q, r, \gamma_{1}, \gamma_{2}, \gamma_{3}, t \text { на } \lambda^{-1 / 2} p, \lambda^{-1 / 2} q, \lambda^{-1 / 2} r, \lambda^{-1} \gamma_{1}, \lambda^{-1} \gamma_{2}, \lambda^{-1} \gamma_{3} ; \lambda^{1 / 2} t+t_{0}
$$

we introduce

$$
y_{1}=p+q i, y_{2}=p-q i, z_{1}=\gamma_{1}+\gamma_{2}=\gamma_{1}-i \gamma_{2}, m_{1}^{\prime}=m_{1}+i m_{2}, m_{2}=m_{1}-i m_{2}
$$

By replacing

$$
y_{1}, y_{2}, r, z_{1}, z_{2}, \Upsilon_{3}, t \quad \text { by } \quad \lambda^{1 / 2} y_{1}, \lambda^{-1 / 2} y_{2}, \lambda^{-1 / 2} r, z_{1}, \lambda^{-1} z_{2}, \quad \Upsilon_{3} ; \quad i \lambda^{1 / 2} t+t_{0}
$$

as indicated in [6], we obtain instead of (1.1) the system of equations

$$
\begin{array}{ll}
2 \frac{d y_{1}}{d t}=-r y_{1}-c \gamma_{3}+\lambda m_{3}^{\prime} y_{1}-\mu_{1} r, & \frac{d z_{1}}{d t}=-r z_{1}+\lambda y_{1} \Upsilon_{3} \\
2 \frac{d y_{2}}{d t}=r y_{2}+\lambda c \gamma_{3}-\lambda m_{3}^{\prime} y_{2}+\lambda \mu_{2} r, & \frac{d z_{2}}{d t}=r z_{2}-\lambda y_{2} \tau_{3} \tag{4.1}\\
2 \frac{d r}{d t}=c\left(z_{2}-\lambda z_{1}\right)+\lambda^{2} \mu_{2} y_{1}-\lambda \mu_{1} y_{2}, & 2 \frac{d \gamma_{3}}{d t}=y_{2} z_{1}-y_{1} z_{2}
\end{array}
$$

For the system (4.1) the following first algebraic integrals exist:

$$
\begin{gather*}
r^{2}-c z_{2}+\lambda\left(2 y_{1} y_{2}-c z_{1}\right)=h_{1} \\
2 y_{1} z_{2}+2 z y_{2}+2 r \gamma_{3}+\mu_{1} z_{2}+\lambda\left(\mu_{2} z_{1}+2 m_{3}^{\prime} \gamma_{3}\right)=h_{2}, \quad z_{1} z_{2}+\lambda \gamma_{3}^{2}=h_{3} \tag{4.2}
\end{gather*}
$$

If (4.1) has a fourth algebraic integral, then according to [4], the system

$$
\begin{equation*}
\frac{d y_{2}}{d r}=\frac{r y_{2}+\lambda c \gamma_{3}-\lambda m_{3}^{\prime} y_{3}+\lambda \mu_{2} r}{c\left(z_{2}-\lambda z_{1}\right)-\lambda \mu_{1} y_{2}+\lambda^{2} \mu_{2} y_{1}}, \quad \frac{d \gamma_{3}}{d r}=\frac{y_{2} z_{1}-y_{1} z_{2}}{c\left(z_{2}-\lambda z_{1}\right)-\lambda \mu_{1} y_{2}+\lambda^{2} \mu_{2} y_{1}} \tag{4.3}
\end{equation*}
$$

in which y_{1}, z_{1} and z_{2} are expressed as functions of $y_{2}, r, \gamma_{3}, h_{1}, h_{2}$ and h_{3} from (4.2), has the algebraic integral $F\left(y_{2}, \gamma_{3}, r, h_{1}, h_{2}, h_{3}\right)=$ const This integral can be expanded into a series in powers of $\lambda^{1 / n}$ in a neighborhood of $\lambda=0$ (where n is an integer):

$$
\begin{equation*}
F_{0}\left(y_{2}, \gamma_{3}, r\right)+\lambda^{1 / n} F_{1}\left(y_{2}, \gamma_{3}, r\right)+\ldots+\lambda F_{n}\left(y_{2}, \gamma_{3}, r\right)+\ldots=\text { const } \tag{4.4}
\end{equation*}
$$

with coefficients which are algebraic functions of their argurients. The quantity F_{0} necessarily depends on at least one of the quantities y_{1} and γ_{3}. If λ is sufficiently small, the general solution of the system may be expanded into series [5] in integer powers

$$
\begin{gathered}
y_{1}=y_{1}{ }^{(0)}+\lambda y_{1}^{(1)}+\ldots, \quad y_{2}=y_{2}^{(0)}+\lambda y_{2}^{(1)}+\ldots, \quad \gamma_{3}=\gamma_{3}^{(0)}+\lambda \gamma_{3}^{(1)}+\ldots \\
z_{1}={z_{1}}^{(0)}+\lambda z_{1}^{(1)}+\ldots, \quad z_{2}=z_{2}^{(0)}+\lambda z_{2}{ }^{(1)}+\ldots
\end{gathered}
$$

Substituting this expansion into the integral (4.4), we obtain

$$
\begin{gathered}
F_{0}\left(y_{2}{ }^{(0)}, \gamma_{3}{ }^{(0)}, r\right)+\lambda^{1 / n} F_{1}\left(y_{2}{ }^{(0)}, \gamma_{3}{ }^{(0)}, r\right)+\ldots \\
\ldots+\lambda\left[F_{n}+y_{2}{ }^{(1)} \frac{\partial F_{0}}{\partial y_{2}{ }^{(0)}}+\gamma_{3}{ }^{(1)} \frac{\partial F_{0}}{\partial \gamma_{3}{ }^{(0)}}\right]+\ldots+\lambda^{2}()+\ldots=\mathrm{const}
\end{gathered}
$$

As was shown in [4 and 5], this relation makes it possible to represent the first integrals, which a system or the form

$$
\begin{gather*}
\frac{d y_{2}{ }^{(0)}}{d r}=\frac{1}{c z_{2}{ }^{(0)}} r y_{2}{ }^{(0)}, \quad \frac{d \gamma_{3}{ }^{(0)}}{d r}=\frac{1}{c z_{2}{ }^{(0)}}\left[y_{2}{ }^{(0)} z_{1}{ }^{(0)}-y_{1}{ }^{(0)} z_{2}{ }^{(0)}\right] \tag{4.5}\\
\frac{d y_{2}^{(1)}}{d r}=\frac{1}{c z_{2}{ }^{(0)}}\left[r y_{2}{ }^{(1)}+c \gamma_{3}{ }^{(0)}-m_{3}{ }^{\prime} y_{2}{ }^{(0)}+\mu_{2} r-\frac{1}{c z_{2}{ }^{(0)}}\left[c\left(z_{2}{ }^{(1)}-z_{1}{ }^{(0)}\right)-\mu_{1 y_{2}}{ }^{(0)}\right] r y_{2}{ }^{(0)}\right] \\
\frac{d \gamma_{3}{ }^{(1)}}{d r}=\frac{1}{c z_{2}{ }^{(0)}}\left[y_{2}{ }^{(1)} z_{1}{ }^{(0)}+y_{2}{ }^{(0)} z_{1}{ }^{(1)}-y_{1}{ }^{(0)} z_{2}{ }^{(1)}-y_{1}{ }^{(1)} z_{2}{ }^{(0)}-\right. \tag{4.6}\\
\left.-\frac{1}{c z_{2}{ }^{(0)}}\left[c\left(z_{2}{ }^{(1)}-z_{1}{ }^{(0)}\right)-\mu_{1 y_{2}}{ }^{(0)}\right] \quad\left(y_{2}{ }^{(0)} z_{1}{ }^{(0)}-y_{1}{ }^{(0)} z_{2}{ }^{(0)}\right)\right]
\end{gather*}
$$

must have, in the following manner:

$$
\begin{gather*}
F_{0}\left(y_{2}{ }^{(0)}, \gamma_{3}{ }^{(0)}, r\right)=\text { const } \tag{4.7}\\
F_{n}\left({y_{2}}^{(0)}, \tau_{3}{ }^{(0)}, r\right)+y_{2}{ }^{(1)} \frac{\partial F_{0}}{\partial y_{2}{ }^{(0)}}+\tau_{3}{ }^{(1)} \frac{\partial F_{0}}{\partial \gamma^{(0)}}=\mathrm{const} \tag{4.8}
\end{gather*}
$$

Let us consider the particular solution of the system (4.3), setting

$$
h_{1}=a^{2}, \quad h_{2}=\lambda^{2}, \quad h_{3}=\lambda^{2}
$$

Then from (4.2) we find

$$
r^{2}-c z_{2}=a^{2}, \quad 2 y_{1}{ }^{(0)} z_{2}{ }^{(0)}+2 z_{1}{ }^{(0)} y_{2}{ }^{(0)}+2 r \gamma_{3}{ }^{(0)}+\mu_{1} z_{2}{ }^{(0)}=0, \quad z_{1}{ }^{(0)} z_{2}{ }^{(0)}=0
$$

It follows from this that

$$
z_{2}{ }^{(0)}=\frac{r^{2}-a^{2}}{c}, z_{1}{ }^{(0)}=0, \quad y_{1}{ }^{(0)}=-\frac{c r}{r^{2}-a^{2}} \Upsilon_{3}{ }^{(0)}-\frac{\mu_{1}}{2}
$$

Then from (4.5) for the determination of $y_{2}{ }^{(0)}$ and $\gamma_{3}{ }^{(0)}$ we have

$$
\begin{equation*}
\frac{d y_{2}{ }^{(0)}}{d r^{2}}=\frac{r}{r^{2}-a^{2}} y_{2}{ }^{(0)}, \quad \frac{d \Upsilon_{3}{ }^{(0)}}{d r}=\frac{r}{r^{2}-a^{2}} \gamma_{3}{ }^{(0)}+\frac{\mu_{1}}{2 c} \tag{4.9}
\end{equation*}
$$

The equations (4.9) will be satisfled by the following particuiar solutions:

$$
\begin{equation*}
y_{2}{ }^{(0)}=0, \quad \gamma_{3}^{(0)}=\frac{\mu_{1}}{2 c} \sqrt{r^{2}-a^{2}} \ln \left(r+\sqrt{r^{2}-a^{2}}\right) \tag{4.10}
\end{equation*}
$$

Since Equation (4.7) determines the algebraic relationship between the above-mentioned arguments, then in order to eliminate the contradiction which is evident in an examination of (4.7) and (4.10), it must be assumed that either F_{0} is independent of $\gamma_{3}{ }^{(0)}$ or $\mu_{1}=0$.

Assuming the first case, we replace in (1.1)

$$
p, q, r, \gamma_{1}, \gamma_{2}, \gamma_{3}, t \text { by } \lambda^{-1} p, \lambda^{-1} q, \lambda^{-1} r, \lambda^{-2} \gamma_{1}, \lambda^{-2} \gamma_{2}, \lambda^{-2} \gamma_{3} \lambda t+t_{0}
$$

respectively, and we write the equations, retaining the earlier notation and quantities, and replacing
$y_{1}, y_{2}, r, z_{1}, z_{2}, \gamma_{3}, t$ by $\lambda y_{1}, \lambda y_{2}, r, \lambda^{2} z_{1}, z_{2}, \lambda \gamma_{3}, \lambda^{2} t+t_{0}$
In a manner analogous to the foregoing, the problem reduces to the study of a system of the form

$$
\begin{equation*}
\frac{d y_{2}}{d r}=\frac{r y_{2}+\mu_{2} r+c \gamma_{3}-\lambda m_{3}^{\prime} y_{2}}{c\left(z_{2}-\lambda^{2} z_{1}\right)-\lambda^{2} \mu_{1} y_{2}+\lambda^{2} \mu_{2} y_{1}}, \quad \frac{d \gamma_{3}}{d r}=\frac{-y_{1} z_{2}+\lambda^{2} y_{1} y_{2}}{c\left(z_{2}-\lambda^{2} z_{1}\right)-\lambda^{2} \mu_{1} y_{2}+\lambda^{2} \mu_{2} y_{1}} \tag{4.11}
\end{equation*}
$$

in which y_{1}, z_{1} and z_{2} must be replaced by functions of $y_{2}, r, \gamma_{3}, h_{1}, h_{2}$ and h_{s} from Equations

$$
r^{2}-c z_{2}-\lambda^{2} c z_{1}+2 \lambda^{2} y_{1} y_{2}=h_{1}, \quad 2 r \gamma_{3}+\mu_{1} z_{2}+2 y_{1} z_{2}+2 \lambda m_{3}{ }^{\prime} \gamma_{3}+2 \lambda^{2} y_{2} z_{1}+\lambda^{2} \mu_{2} z_{1}=h_{2}
$$

Let us consider the particular solution of the system (4.11) determined by the following values of the srbitrary constants of (4.12):

$$
\begin{equation*}
h_{1}=a^{2}, \quad h_{2}=\lambda^{2}, \quad h_{3}=\lambda^{2} \tag{4.13}
\end{equation*}
$$

Then, utilizing equations (4.12) and (4.13), we pass from the system (4.11) to the system

$$
\begin{equation*}
\frac{d y_{2}}{d r}=\frac{r y_{2}{ }^{(0)}+\mu_{2} r+c{\gamma_{3}{ }^{(0)}}_{c z_{2}}{ }^{(0)}}{}, \quad \frac{d \gamma_{3}{ }^{(0)}}{d r}=-\frac{y_{1}{ }^{(0)}}{c} \tag{4.14}
\end{equation*}
$$

The system (4.14) will be satisfied by the particular solutions

$$
\begin{gathered}
y_{2}^{(1)}=\mu_{2} \varphi\left(r^{2}-a^{2}\right)+\frac{\mu_{1}}{2} \int_{r_{0}}^{r} \frac{\ln \left(r+\sqrt{r^{2}-a^{2}}\right)}{r^{2}-a^{2}} d r \\
\tau_{3}{ }^{(0)}=\frac{\mu_{1}}{2 c} \sqrt{r^{2}-a^{2}} \ln \left(r+\sqrt{r^{2}-a^{2}}\right)
\end{gathered}
$$

where $\varphi\left(r^{2}-a^{2}\right)$ is an algebraic function of the above argument.
If $\mu_{1} \neq 0$, the function $F_{0}\left(y_{2}{ }^{(0)} \cdot r\right)$ in a manner similar to, the foregoing, must be dependent of $y_{2}{ }^{(0)}$ which contradicts the property of

$$
F_{0}\left(y_{2}{ }^{(0)}, \gamma_{3}{ }^{(0)}, r\right)
$$

and we must assume from [4 and 5], that $\mu_{1}=0$ is a necessary condition for the existence of a fourth algebraic integral of the problem under discussion. If $\mu_{1}=0$, then $\mu_{2}=0$, which is obvious. We shall show that $m_{3}{ }^{\prime}=0$ as well. Introducing new variabies into (1.1), as in the previous case, and replacing

$$
y_{1}, y_{2}, r, z_{1}, z_{2}, \gamma_{3}, t \text { by } \lambda y_{1}, y_{2}, r, \lambda z_{1}, z_{2}, \lambda \gamma_{3}, \lambda t+t_{0}
$$

we reduce the problem to the study of a system of the form

$$
\begin{equation*}
\frac{d y_{2}}{d r}=\frac{r y_{2}+\lambda c \gamma_{3}-\lambda m_{3}^{\prime} y_{2},}{c\left(z_{2}-\lambda z_{1}\right),}, \quad \frac{d \gamma_{3}}{d r}=\frac{y_{2} z_{1}-y_{1} z_{2}}{c\left(z_{2}-\lambda z_{1}\right)} \tag{4.15}
\end{equation*}
$$

In a manner analogous to the above, it can be shown that a necessary condition for the existence of an algebraic integral of the system (4.15) will be $m_{3}{ }^{\prime}=0$.

Thus, it can be asserted that the first set of necessary conditions for the existence of a new fourth algebraic integral of the system (1.1) can be written in the form $A=B=2 C, y_{0}{ }^{\prime}=z_{0}^{\prime}-0, m_{1}=m_{2}=m_{3}=0$.
5. We shall now prove the assertion made in Section 3. In equations (1.1) we replace

$$
p, q, r, \quad \gamma_{1}, \gamma_{2}, \gamma_{3}, t \quad \text { by } \quad \lambda^{-1} p, \lambda^{-1} q, \lambda^{-1} r, \lambda^{-2} \gamma_{1}, \lambda^{-2} \gamma_{2}, \lambda^{-2} \gamma_{3}, \lambda . t+t_{0}
$$

Then for y_{1}, y_{2}, r and γ_{3} we obtain equations of the form

$$
\begin{array}{ll}
\frac{d y_{1}}{d t}=(m-1) y_{1} r+z_{0} z_{1}+\lambda\left(m_{3} y_{1}-m_{1} r\right), & \frac{d r}{d t}=\lambda \frac{m_{2} y_{1}-m_{1} y_{2}}{2 m} \tag{5.1}\\
\frac{d y_{2}}{d t}=(1-m) y_{2} r-z_{0} z_{2}+\lambda\left(m_{2} r-m_{3} y_{2}\right), & \frac{d \gamma_{3}}{d t}=\frac{y_{2} z_{1}-y_{1} z_{2}}{2}
\end{array}
$$

where $m=C A^{-1}$, while $m_{1}^{\prime} A^{-1}$ and $z_{o}^{\prime} A^{-1}$ are replaced, respectively, by m_{1} and z_{0}.

Directing the axis $O x$ along the directional vector of the equatorial component of m, we find $m_{1}=m_{2}$. Let us consider the quantities

$$
\xi=\lambda^{-1}\left(y_{1}+y_{2}\right), \quad \eta=y_{1}-y_{2}, \quad \alpha=z_{1}+z_{2}, \quad \beta=\lambda^{-2}\left(z_{1}-z_{2}\right), \quad u=\lambda^{-1} r
$$

In order to determine these we have Equations

$$
\begin{equation*}
\frac{d \xi}{d u}=2 m \frac{\left.(m-1) \lambda u+m_{3} /(m-1)\right] \eta+\lambda z_{0} \beta}{m_{1} \eta}, \quad \frac{d \gamma_{3}}{d u}=\frac{m}{2}-\frac{\eta \alpha+\lambda^{3} \xi \alpha}{m_{1} \eta} \tag{5.2}
\end{equation*}
$$

In a manner analogous to the above, in the new variables we obtain a system of intergrals of Equations (1.1) in the form

$$
\begin{gather*}
-\eta^{2}-8 z_{0} \gamma_{3}+\hat{\lambda}^{2}\left(\xi^{2}+4 m u^{2}\right)=h_{1}, \quad \bar{\xi} \alpha+2 m_{1} \alpha+4 m\left(u+m_{3} / m\right) \gamma_{3}-\lambda \eta \beta=h_{2} \\
\alpha^{2}+4 \gamma^{2}-\lambda^{4} \beta^{2}=h_{3} \tag{5.3}
\end{gather*}
$$

From the system (5.2) and the integrals (5.3) for ξ_{0} and $\gamma_{3}{ }^{(0)}$ we have Equations

$$
\begin{equation*}
\frac{d \xi_{0}}{d u}=2 m \frac{m-1}{m_{2}}\left(u+\frac{m_{3}}{m-1}\right), \quad \frac{d \gamma_{3}{ }^{(0)}}{\sqrt{h_{3}-4 \gamma_{3}{ }^{(0)^{2}}}}=-\frac{m}{2 m_{1}} d u \tag{5.4}
\end{equation*}
$$

which have the following particular solution :

$$
\xi_{0}=2 \frac{m(m-1)}{m_{1}} \int_{u_{0}}^{u}\left(u+\frac{m_{3}}{m-1}\right) d u, \quad \tau_{3}^{(0)}=-\frac{\sqrt{\cdot} \overline{h_{3}}}{2} \sin \left(\frac{m}{m_{1}} u\right)
$$

In a manner analogous to [4 and 5], we conclude that if the fourth algebraic integral exists, it must depend only on ξ and u

Let us consider the particular solutions for the values $h_{1}=h_{a}=\lambda^{2}$, $h_{3}=4 \lambda^{2}$. In this case, from (5.2) and (5.3) for determining ξ_{1} and $\gamma_{3}{ }^{(1)}$, we find Equations

$$
\begin{equation*}
\frac{d \xi_{1}}{d u}=-\frac{m\left[\xi_{0}\right.}{} \frac{\left.+2 m\left(u+m_{3} / m\right)+2 m_{1} i\right] \gamma_{1}+i \gamma_{0} \xi_{1}}{2 m_{1} \gamma_{0}}, \quad \frac{d \gamma_{3}(1)}{d u}=-\frac{i m}{m_{1}} \gamma_{3}^{(1)} \tag{5.5}
\end{equation*}
$$

which have the following particular solutions :

$$
\xi_{1}=\exp \left(\frac{-i m u}{2 m_{1}}\right) \quad \gamma_{s}^{(1)}=0
$$

This indicates that the fourth algebraic integral is independent of 5 as well, but this contradicts the property of the integral, or else the reasoning does not hold, which is possible only if $m_{1}=m_{2}=0$. In this case, as follows from [2], the classical integral $r=r_{0}$ exists and we
have completely proved the assertion of Section 3 that if $x_{0}{ }^{2}+y_{0}{ }^{\prime 2}+z_{0}{ }^{2} \neq 0$ and $m_{1}{ }^{2}+m_{2}{ }^{2}+m_{2}{ }^{2} \neq 0$ a fourth algebraic integral is possible only when $A=B, \quad x_{0}{ }^{\prime}=y_{0}^{\prime}=0, m_{1}=m_{2}=0$.

The author expresses his gratitude to Iu.A. Arkhangel'skil and P.V. Miasnikov for their valuable advice.

BIBLIOGRAPHY

1. Volterra, V., Sur la théorie des variations des latitudes. Acta Mathematica, Vol.22, pp.201-341, 1898-1899.
2. Keis, I.A., 0 sushchestvovanil nekotorykh integralov uravnenil dvizhenila girostata (On the existence of certain integrals of the equations of motion of a gyrostat). Vestn.MGU, № 6, pp.55-62, 1963.
3. Poincaré, H., Les méthodes nouvelles de la méchanique céleste. Vol.l, 1892.
4. Husson, E.D., Sur un théoreme de H. Poincaré relativement au mouvement d'un solide pesant. Acta Mathematica, Vol.31, pp.71-88, 1908. Recherche des intégrales algébriques dans le mouvement d'un solide pesant autour d'un point fixe. Ann.d.I.faculté des sciences de l'univ.de Toulouse, 2 série Vol.VIII, pp.119-152, 1906.
5. Arkhangel'skii, Iu.A., Ob odnoi teoreme Poincaré otnosiashcheisia k zadache o dvizhenii tverdogo tela v n'iutonovskom pole sil (On the theorem of Poincaré concerning a motion of a rigid body in a Newtonian force field). FAM Vol.26, No 6, 1962.
6. Arkhangel'skii, Iu.A., Ob algebraicheskikh integralakh v zadache o dvizhenil tverdogo tela v n'lutonovskom pole sil (On the algebraic integrals in the problem of motion of a rigid body in a Newtonian field of furce). PMM Vol.27, № $1,1963$.
